
Projects 8, 9, and 10

PROJECT DESCRIPTION

Write a game that randomly generates a number from 1 to 9. The player guesses
numbers by clicking on the number tile corresponding to their guess. Tiles are
highlighted when the mouse is over them. If the player clicks the left mouse button on a
tile that's an incorrect guess, the tile slowly shrinks until it's no longer visible. When the
player clicks the left mouse button on the tile that’s the correct guess, the tile blinks for a
few seconds. The game then randomly generates a new number and resets the board.
The player keeps playing until they press <Esc>.

The game plays appropriate sounds on incorrect guesses, correct guesses, and the
start of a new game.

Unzip the GameProjectMaterials.zip file to a reasonable location.

I've provided a shell GameProject project in the zip file. The project contains all the
classes you need as well as stubs for all the methods you need. I even threw in some
extra code snippets where I thought they might be helpful. Use this project as your
starting point for the game project!

The zip file also contains the graphic and sound assets I used for my game. The focus
for this project is on the programming, so you should use the provided assets to get
your code working. If you want to mess around with the graphics and sounds later,
that's fine, but the code is what the learning is actually about.

AUDIO ASSET DETAILS

Audio Component Name
AudioEngine "sounds.xgs"
WaveBank "Wave Bank.xwb"
SoundBank "Sound Bank.xsb"

Cue Name Description
"correctGuess" Explosion sound
"incorrectGuess" Loser sound
"newGame" Applause sound

REQUIREMENTS

You are not in any way required to follow the steps below. I thought it might be useful,
however, for you to know the sequence of steps I followed to complete the game
project. In most cases, I followed the steps in the order below, but in rare cases I

actually decided I should have completed a particular step at a different point. That
realization is reflected in the steps below.

As a final comment, you should note that I compiled and tested the game after every
step listed below.

Project 8

This project displays the opening screen. When the player presses Enter, the opening
screen disappears and the board (without any number tiles) is displayed.

1. Run the project as provided to make sure it compiles and runs for you
2. Add code to the Game1 constructor to set the window width to 800 and height to

600 and to make the mouse visible
3. Declare a GameState field in the Game1 class and set it to GameState.Menu. This

field will be used to keep track of the current game state
4. Add the openingscreen.png file to the GameProjectContent project. This is the

graphical asset that will be displayed when the game starts
5. Declare a Texture2D field in the Game1 class to hold the opening screen image.

As usual, we’ll load content into this field then draw it as appropriate
6. Declare a Rectangle field in the Game1 class to hold the draw rectangle for the

opening screen image. We’ll use this field to draw the opening screen image as
the appropriate size

7. In the Game1 LoadContent method, load the opening screen texture into the field
from Step 5

8. In the Game1 LoadContent method, create a new Rectangle object and put it in the
field from Step 6. The rectangle should be created so the opening screen takes
up the entire window

9. In the Game1 Draw method, if the current game state is GameState.Menu draw the
opening screen texture in the opening screen draw rectangle

10. Declare a NumberBoard field in the Game1 class. This field will be used to hold the
number board for the current game

11. In the Game1 LoadContent method, create a new NumberBoard object and put it in
the field from Step 10. Use the window width and height to calculate the board
side length and the board center before calling the constructor. The board should
be centered in the window and should be smaller than the window width and
height. At this point, I just set the correct number to 8 and the sound bank to null

12. Add the board.png file to the GameProjectContent project. This is the graphical
asset we’ll use for the board background

13. Declare a Texture2D field in the NumberBoard class to hold the board texture
14. Declare a Rectangle field in the NumberBoard class to hold the draw rectangle for

the board texture
15. Write the NumberBoard LoadContent method
16. Write the NumberBoard constructor, which loads the content (by calling the

LoadContent method you wrote in the previous step), creates a new draw
rectangle object, and calculates the size of the number tiles on the board. Be

sure to include borders around the tiles using the BORDER_SIZE constant; the
picture below might help you generate the appropriate calculation. Don’t create
the number tiles yet

17. Write the NumberBoard Draw method to draw the board texture in the board draw
rectangle. Don’t draw the number tiles yet.

18. In the Game1 Update method, add an if statement that changes the game state to
GameState.Play if the current game state is GameState.Menu and the Enter key is
pressed. The following code returns true if the Enter key is pressed and false
otherwise:

Keyboard.GetState().IsKeyDown(Keys.Enter)

19. In the Game1 Draw method, add an else clause to the if statement from Step 9 to
have the board draw itself if the current game state is GameState.Play

Project 9

This project displays all the number tiles, which highlight when the mouse is over them.
When incorrect tiles are clicked, they shrink until they disappear.

20. Add the eight.png file to the GameProjectContent project. This is the graphical

asset for the number 8 tile
21. Declare a Texture2D field in the NumberTile class to hold the tile texture
22. Declare Rectangle fields in the NumberTile class to hold the draw and source

rectangles for the tile texture. We need both draw and source rectangles
because the tile textures we’ll be using are sprite strips with multiple frames. The
draw rectangle will tell us where to draw the tile and the source rectangle will tell
us which texels from the Texture2D field we should draw

23. Write the NumberTile LoadContent method. Use the ConvertIntToString helper
method I provided to convert the integer to the string for the tile number (e.g.,

converting 8 to "eight"). We use this string in the LoadContent method so we can
load the correct graphics content. You also need to create a new source
rectangle object in this method; make it “cover” the left half of the texture you just
loaded

24. Write the NumberTile constructor, which sets the original side length field in the
class, loads the content (using the LoadContent method you wrote in the previous
step), creates a new draw rectangle object, and sets the is correct number flag
appropriately based on the number and correctNumber parameters for the
constructor

25. Declare a NUM_ROWS by NUM_COLUMNS array field in the NumberBoard class to hold
NumberTile objects and create the array object

26. In the NumberBoard constructor, add a nested for loop to initialize the NumberTile
array. For now, I just create all the tiles with 8 for the tile number and correct
number arguments and null for the sound bank argument. Note that we also
have to calculate the center for each number tile to pass in to the NumberTile
constructor. Use the CalculateTileCenter helper method I provided to help with
this

27. Write the NumberTile Draw method to draw the tile texture using the draw and
source rectangles

28. In the NumberBoard Draw method, add code to draw all the tiles. Nested for loops
is a reasonable way to do this

29. At this point, when I run the game it draws the board with 9 "eight" tiles on it. Add
the .png files for the rest of the numbers to the GameProjectContent project

30. Change the calls to the NumberTile constructor to use the actual numbers for
each of the tiles. The most intuitive way to do this is to use a counter variable that
keeps track of the current tile number, but you can also get full credit by
calculating the current tile number based on the loop control variables for the
nested for loops. The board should now contain the correct number tiles when
you run the game

31. In the Game1 Update method, if the current game state is GameState.Play get the
current mouse state and call the NumberBoard Update method

32. In the NumberBoard Update method, add code to call the Update method for each
of the tiles. Nested for loops is a reasonable way to do this

33. In the NumberTile Update method, add an if statement at the beginning of the
method to set the source rectangle X appropriately based on whether or not the
mouse is over the draw rectangle for the tile. At this point, each of the tiles
highlights when the mouse is over the tile and unhighlights when the mouse isn’t
over the tile

34. Add fields to the NumberTile class to tell if the tile is visible, if the tile is blinking,
and if the tile is shrinking. Initialize those fields appropriately

35. Add clickStarted and buttonReleased fields to the NumberTile class. In the
NumberTile Update method, change the if statement from Step 33 to detect
mouse clicks on the number tile. You can use the code at the very end of
Chapter 8 to help you with this, but remember that the last line of code there
should have set buttonReleased to false, not true. Replace the code (from
Chapter 8) that changes the game state when a click is finished on the menu

button with code that does the following instead: If the player just clicked on the
tile and the tile corresponds to the correct number, set the tile is blinking field to
true, otherwise set the tile is shrinking field to true. You need to detect clicks
rather than left mouse button presses so the player can’t just “sweep” the mouse
over the tiles to guess numbers

36. You don't have to do anything for this step; it's just explaining our plan for moving
forward. We now need to modify our NumberTile Draw method and continue to
refine our NumberTile Update method to handle this new information. Specifically:

a. Once the user has clicked the mouse button on the tile (it's blinking or
shrinking), we don't want to use the if statement from the previous step to
set any flags. That way, the user can only click the mouse button on a tile
once

b. Once a tile is blinking or shrinking, we need to update the blinking
animation or the (shrinking) draw rectangle size on each update

c. Once the tile is no longer visible (it shrunk away to nothing or finished
blinking), we don't want to draw it at all any more

37. In the NumberTile Draw method, only draw the tile if it’s visible
38. Declare and initialize fields in the NumberTile class to keep track of the total

milliseconds it takes the tile to shrink (this should be a constant) and the elapsed
shrink milliseconds so far (this should be a variable)

39. In the NumberTile Update method, add an if statement that checks if the tile is
shrinking. If it is, update the elapsed shrink milliseconds field by adding
gameTime.ElapsedGameTime.Millisconds to it. Calculate the new side length for
the tile using the original side length and the ratio between (total shrink
milliseconds - elapsed shrink milliseconds) and total shrink milliseconds.
CAUTION: Force the ratio to get calculated as a float, otherwise your tile
will just disappear instead of gradually shrinking. Doing it this way makes the
shrinking tile start at (almost) full size, then shrink down to 0. If the new side
length is > 0, set the width and height of the draw rectangle to the new side
length; otherwise, set the visible flag for the tile to false

40. At this point, clicking on any tile except the 8 tile should make the tile gradually
shrink until it’s disappeared. Unfortunately, if you move the mouse off the
shrinking tile it’s no longer highlighted, which doesn’t look right. In the NumberTile
Update method, move the entire if statement you wrote in Step 35 into an else
clause for the if statement you wrote in Step 39 so the source rectangle is only
changed if the tile isn’t shrinking. There are other ways to make sure the tile
stays highlighted, but doing it this way is required for later steps

Project 10

This project finishes the game. When the correct tile is clicked, it blinks for a while then
a new game is started. The game also includes sound effects.

41. Next we want to make it so that when the correct tile is clicked, that tile starts
blinking. Add all the blinking number .png files to the GameProjectContent project

42. Declare a Texture2D field in the NumberTile class to hold the blinking tile texture
43. In the NumberTile LoadContent method, add code to load the blinking tile texture

into the field from the previous step. Note that you can use the string for the tile
number to build the name of the texture (all the blinking textures start with
“blinking” followed by the number string)

44. Now we have two textures we need to use for drawing: one for normal and
shrinking tiles and the other for blinking tiles. That means we’ll need to keep track
of the current texture we’re using so we draw the appropriate one. Declare a
Texture2D field in the NumberTile class to hold the current texture we’ll be
drawing

45. In the NumberTile LoadContent method, add code to set the current texture to the
non-blinking texture

46. In the NumberTile Draw method, change the code to draw the current texture
47. In the NumberTile Update method, add two lines of code just after the line where

you set the tile is blinking field to true. Your first new line of code should set the
current texture to the blinking texture. Your second new line of code should set
the X property for your source rectangle to 0

48. In the NumberTile Update method, change the original if clause (that checked if
the tile is shrinking) for the if statement from Step 39 to an else if instead. Now
add an if clause before that else if clause to check if the tile is blinking. You'll now
have an if statement with an if clause that checks if the tile is blinking, an else if
clause that checks if the tile is shrinking, and an else clause that
highlights/unhighlights the tile and lets the player click the mouse button on the
tile. Basically, we’re doing different update processing on the tile based on the
current tile state (blinking, shrinking, or normal).

49. You don’t have to do anything in this step, it’s just explaining how the next two
steps will work. For our blinking animation, we need to have two timers. We’ll use
one timer, elapsedBlinkMilliseconds, to tell us when the blinking animation
should stop. We’ll use the other (shorter) timer, elapsedFrameMilliseconds, to
tell us when it’s time to change frames in the animation. See the picture below.

50. Inside the if clause you added in Step 48, add code to determine when to make
the tile invisible (after it’s done blinking). Note that I've already included
elapsedBlinkMilliseconds and TOTAL_BLINK_MILLISECONDS fields for you to use
for this. You’ll need to update the elapsed blink milliseconds field by adding

gameTime.ElapsedGameTime.Millisconds to it before deciding whether or not to
stop the blinking animation

51. After the code you added in the previous step (but still inside the if clause you
added in Step 48), add code to update the animation frame as appropriate. I've
already included elapsedFrameMilliseconds and TOTAL_FRAME_MILLISECONDS
fields for you to use for this. Add gameTime.ElapsedGameTime.Millisconds to the
elapsed frame milliseconds field then use the new value to decide when to
change to a new animation frame. To change frames in the blinking animation,
you need to move the source rectangle left or right (depending on where the
source rectangle currently is) after each frame ends to change the texels being
displayed

52. You don't have to do anything for this step, it’s just a check on your progress. At
this point, clicking the 8 tile should make it blink between yellow and green for a
few seconds, then the tile should disappear. Clicking on all the other tiles makes
them shrink down until they're no longer visible.

53. You don't have to do anything for this step either; it's just explaining what you'll
be doing next. Now we're faced with a difficult problem. When the correct number
is guessed, we're supposed to reset the board and start a new game. We
allocated the responsibility of determining whether or not the correct number was
guessed to each individual number tile (this was the correct design decision), but
how does the number tile let the game know that the correct number was
guessed? The NumberTile class doesn't know anything about the Game1 or
NumberBoard classes, so how can it communicate this information to them?
There's a very slick way to do this in C# using something called a delegate, but
that's not introductory-level material. Instead, I've made the NumberBoard Update
method and the NumberTile Update method return a bool instead of the typical
void. A false will mean the correct number hasn't been guessed yet and a true
will mean it has. This isn't the best general solution (delegates are), but it's the
best solution using what we know at this point

54. In the NumberBoard Update method, we need to return true if one of the
NumberTile Update calls returns true (indicating that the correct number was
guessed), otherwise we need to return false. Change the call to the NumberTile
Update method to put the result into a bool variable; the syntax is similar to when
you called the Deck TakeTopCard method and put the returned value into a Card
variable. If this bool variable is true after the call to the method, return true from
NumberBoard Update method. Doing it this way ensures the method immediately
returns true if the correct number is guessed and also lets us skip the updates
for the rest of the number tiles. There are more complicated ways to do this to
make sure all the tiles get updated (to make sure we don’t skip updating
shrinking animations for 1/60 of a second, for example, for tiles that are currently
shrinking), but this approach works fine here

55. You don’t have to do anything for this step, but you might be wondering if the
NumberBoard Update method returns false correctly. The answer is yes, because
the only way we get to the last line of code in the method is if none of the
NumberTile Update method calls return true, which means the correct number
wasn’t guessed on this update. Slick, huh?

56. In the Game1 Update method, change the call to the NumberBoard Update method
to declare a variable to tell whether or not the correct number has been guessed
and put the returned value from the method call into that variable

57. Cut the code you added to the Game1 LoadContent method to calculate the board
size and actually create the board and paste that code into the StartGame method
I provided at the end of the Game1 class. Call the StartGame method from the
Game1 LoadContent method where you used to have that code. You'll see why we
need to do this soon

58. In the Game1 Update method, add an if statement right after the call to the
NumberBoard Update method to check if the correct number has been guessed. If
it has, call the StartGame method

59. At this point, we never actually end up restarting a game. That's because the
NumberTile Update method always returns false. In the code in that method that
sets visible for a blinking tile to false (see step 50), change the code that sets
visible to false to return true; instead. We don't want to return true from this
method right when the user picks the correct number because then they won't
get to see any blinking, so we return true when the blinking is done

60. At this point, our game always has 8 as the correct number. Declare a Random
field in the Game1 class and use new Random() to instantiate the object for the field

61. In the StartGame method, declare a variable to hold the correct number for the
current game and set it to a random number (from 1 to 9 inclusive) you generate
using the field from the previous step. Pass that number as the correct number
argument when you call the NumberBoard constructor in the StartGame method

62. In the NumberBoard constructor, change the call to the NumberTile constructor to
pass the correctNumber parameter as the correct number argument (instead of 8
or whatever hard-coded number you used)

63. Holy smokes! The game is – finally – almost done. It should all be working
properly for you by this point, with the sound effects the only thing that’s missing.
Copy the sounds.xap and .wav files into the GameProjectContent folder and add
the sounds.xap file to the GameProjectContent project

64. Declare fields in the Game1 class for the audio api components (see Chapter 14 in
the book)

65. In the Game1 LoadContent method, add code to load the audio content (see
Chapter 14 in the book)

66. In the StartGame method, pass the sound bank as the sound bank argument to
the NumberBoard constructor (instead of the null you’ve been passing)

67. In the NumberBoard constructor, change the call to the NumberTile constructor to
pass the soundBank parameter as the sound bank argument (instead of null)

68. Declare a field in the NumberTile class to hold a SoundBank object
69. In the NumberTile constructor, add code to set the field from the previous step to

the soundBank parameter
70. In the NumberTile Update method, add code to play the correctGuess cue when

the player picks a tile corresponding to the correct number (right after you set the
blinking flag to true) and to play the incorrectGuess cue when the player picks
an incorrect tile (right after you set the shrinking flag to true)

71. In the Game1 Update method, add code to play the newGame cue before calling
the StartGame method. We do this here rather than in the StartGame method
because we don't want this cue to play for the first game

72. Change the if statement at the top of the Game1 Update method to exit if the
<Esc> key is pressed

73. That's it, you're done! You probably deserve at least a six-pack of your favorite
(legal) beverage for this one

HELPFUL HINTS

If you decide to follow my recommendation and use the sequence of steps above, you
can’t skip any of the steps or do them out of order. You’ll have to do every step, in
order, to get the project done. If you get stuck on a particular step, you have to figure it
out and make sure it’s correct before moving on.

USING A 360 CONTROLLER

If you’d like, change the game to use an Xbox 360 controller instead of the mouse and
keyboard. You’ll need to change the intro screen image and processing to have the
player press a button on the controller to advance past the intro screen, change the
number tile so the player changes the selected number tile using the left thumbstick,
and have the player click a button on the controller to select the number tile that’s
currently highlighted. When a new game starts, be sure to highlight a number tile.

This is actually a lot of work. Making the changes above aren’t as simple as you might
think, but you should be able to use Section 9.7 from the book to help you figure out
how to do a lot of the work here, including making the thumbstick navigation have a
reasonable delay before moving to a new number tile. You shouldn’t use the thumbstick
to drive a “pointer” around the screen to replace the mouse; instead, changing between
tiles should work as you’d typically see with a 360 controller (like it works on the menu
in Section 9.7).

